Главная страница «Первого сентября»Главная страница журнала «Информатика»Содержание №19/2009


В мир информатики
Это полезно знать

Алгоритм расчета праздника Пасхи

vmi@1september.ru

“Король математиков” XIX века Карл Фридрих Гаусс внес огромный вклад не только в чистую математику, но и в огромное число приложений — от геодезии и картографии и до азартных игр. В частности, он предложил формулы для непосредственного определения датировок весеннего равноденствия и христианской Пасхи.

Мы приведем алгоритм расчета даты православной Пасхи, основанный на формулах Гаусса, как говорят англичане, “as is”, т.е. “как есть”, безо всяких объяснений и обоснований.

1. Определить остаток от деления номера года на 19 (назовем его a).

2. Вычислить остаток от деления номера года на 4 (назовем его b).

3. Определить остаток от деления номера года на 7 (назовем его c).

4. Рассчитать остаток d от деления суммы (19a + 15) на 30.

5. Вычислить остаток e от деления суммы (2b + 4c + 6d + 6) на 7.

6. Определить сумму f = d + e.

7. Пасха будет либо в марте, либо в апреле (все даты получаются по старому стилю [1]) в зависимости от величины f:

если f не больше 9,

то

дата Пасхи — (22 + f) марта,

иначе

Пасха приходится на (f – 9) апреля

все

Формулы предусматривают два исключения: при
d = 29 и e = 6 Пасха должна быть перенесена с расчетной даты — с 26 апреля на 19 апреля2, а при d = 28 и
e = 6 — с расчетной даты 25 апреля на 18 апреля3.

Таким образом, Пасха всегда происходит между 22 марта и 25 апреля (еще раз напомним, что все даты приводятся по старому стилю).

Например, для 2009 года:

1. а = 14.

2. b = 1.

3. c = 0.

4. d = 11.

5. e = 4.

6. f = 15.

7. Так как f 9, то месяц — апрель, а день — 15 – 9 = 6. “Переводя” полученную дату в новый стиль, получим: 6 + 13 = 19 апреля.

Дату Пасхи в 2010 году предлагаем читателям определить самостоятельно. Для этого разработайте компьютерную программу (на языке программирования, который вы изучаете) или используйте электронную таблицу Microsoft Excel. Результаты, пожалуйста, присылайте в редакцию.

В заключение заметим, что приведенные формулы справедливы только для периода с 1900 по 2099 год.

Литература

1. О старом и новом стиле. / “В мир информатики” № 114 (“Информатика” № 20/2008).


2 Такой случай был в 1981 г.

3 Этот случай имел место в 1954 г.

TopList